

Open and Reproducible Science

A Local Perspective

Nick Scholand

Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.

scholand@tugraz.at

January 15, 2024

DOI:10.5281/zenodo.10495314

Open science is an essential part of my work

- Work on open source software developed by global science community: BART¹
- Workflow designed for publication of paper figure scripts^{2,3,4}
- Institute⁵ has strong focus on open and reproducible science
 - Biannually reproducibility event days⁶
 - Continuous integration for paper reproducibility
 - Tutorials, Webinars, Workshops,...

:

¹Berkeley Advanced Reconstruction Toolbox, M. Uecker et al., 2013.
²Github:mrirecon/raga
³Github:mrirecon/bloch-moba—misc

⁴Github:mrirecon/bloch-moba
⁵Institute of Biomedical Imaging, Prof. Dr. Martin Uecker
⁶Scholand, Zenodo, 2024

Which Influence has Open and Reproducible Science?

Global/Community Perspective

- Democratize access to research¹
- Enhance accountability of research integrity¹
- Facilitate the self-corrective process of science¹
- May increase productivity²

Global/Community Perspective

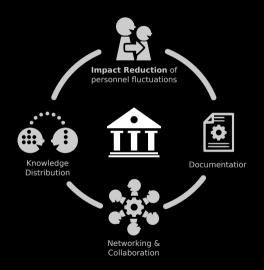
- Democratize access to research¹
- Enhance accountability of research integrity¹
- Facilitate the self-corrective process of science¹
- May increase productivity²

 $\rightarrow \text{Local Perspective}$

¹Center for Open Science, @cos.io/about, 09.01.2024

²OECD Science, Technology and Industry Policy Papers, No. 25.

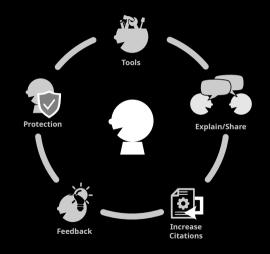
Local Perspective



Institutional

Personal

Local Perspective: Institutional

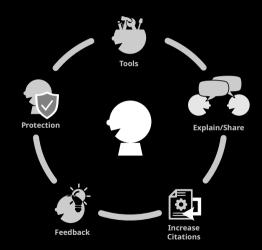

- Improves documentation and collaborations
- Simplifies knowledge distribution
- Reduces impact of personnel fluctuations

Local Perspective: Personal

General:

- Protects from accusations of research misconduct¹
- Increases paper citation rates^{2,3}
- Strong indicator of rigor, trustworthiness, and transparency¹

²Piwowar et al., PLoS ONE, 2007.


³McKiernan et al., eLife, 2016.

Local Perspective: Personal

From Experience:

- Helps me explain and share my work
- Enables me to quickly and **simply modify analyses** and figures
- Gives me feedback about errors and typos in abstracts and publications

How to Learn About Open and Reproducible Science?

Learn About Open and Reproducible Science

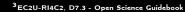
Reactive

- Loss of data and documentation
- Long starting periods for new employees

- Difficulties to reproduce others or own work

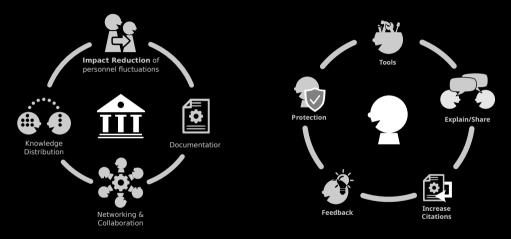
 \Rightarrow Happens too often... \rightarrow Proactive Learning

Learn About Open and Reproducible Science


Proactive

- Create internal guidelines/policies
- Regular internal training/event days
- (The Reproducibility Day 1)

- Visit events (OSA Info-Day....)
- Read examples² and guidelines³
- Attend courses (University. Organizations⁴....)
- Learn from supervisors, co-authors, and reviewers



There are many reasons for Open and Reproducible Science!

Thank you for your attention :)

